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CHANCE~-CONSTRAINED PROGRAMMING

WITH O-1 OR BOUNDED DECISION VARIABLES

by

Frederick S. Hillier

1. Introduction

To introduce chance-constrained programming, consider the linear

programming model,

subject to Ax <b,

where ¢ and x are n-vectors, b 1s an m-vector, and A isan mX n
matrix. Now suppose that some or all of the elements of A, b, and c¢
are random varilables rather than constants. Several approaches to this
problem of linear programming under risk have been developedol One of

these, called "stochastic linear programming,” is primarily concerned

with the probability distribution of max x A second approach,

0"
originally called "linear programming under uncertainty," deals with a
special case of the problem by reducing it to an ordinary linear programming

problem.5 The "chance-constrained programming" approach reformulates the

“See N&slund [27] for a survey and comprehensive set of references.
2See Tintner [34] for the original presentation of this approach.

5This special case 1s one in which each random variable has only a finite
number of possible values, and the particular value it actually takes on
will become known before certain of the decision variables must be
assigned values. See Dantzig [11] for the original presentation of this
approach.



problem as:

optimize f(c, x) 5
subject to Prob {Ax < b} >a ,

x>0,

where O 1is an m-dimensional column vector whose elements lie between O
and 1. Thus, a nonnegative solution x 1is feasible if and only if

4

n l
Prob jgﬁ aijlef bi‘ E'Qi fori=1, ... , m,

(

J

so that the complementary probability, 1 - ai, represents the allowable

risk that the random variables will take on values such that

Z: a, . x, > b If a.,, ... , &, , b, are all constants rather than

521 1573 il in i

random variables for a particular value of 1, then a becomes irrel-

evant and the ith constraint can remain in the form, Z: aleJ < b .

The objective function f(c, x) often is taken to be ihi mathematical

expectation of ex, Z: C')Xj’ although other criteria also
j=1

may be usedolL If certain of tie random variables will be observed before

certain elements of x must be specified, the problem may be formulated

in terms of choosing a decision rule, x = V¥ (A, b, c), instead of

specifying all elements of x directly. In this case, the function V¥

normally would be restricted to a specified class of functions (e.g., the

class of linear functions) but the parameters of V¥ may be decision

variables.

See Charnes and Cooper [5] for an analysis of alternative criteria.
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Chance-constrained programming was formulated originally by Charnes,

Cooper, and Symonds [7] and Charnes and Cooper [4], and has since been
further developed and applied by Charnes and Cooper [5, 6], Charnes,
Cooper and Thompson [8, 9], Ben-Israel [3], Kataoka [21], Kirby [23],
Naslund [26], Naslund and Whinston [28], Sinhal [31], Thiel [32],
Van De Panne and Popp [35], and Miller and Wagner [25]. The point of
departure of this paper from this previous work is three-fold. First,
several linear inequalities will be introduced that permit the approxi-
mate solution and analysis of chance-constrained programming problems
with either zero-order or linear decision rules as ordinary linear pro-
gramming problems. Second, the case where some or all of the elements
of x are 0-1 (yes-no) variables rather than continuous variables also
is considered, and both exact and approximate solution procedures are
presented. Third, since linear decision rules are not meaningful with
0-1 variables, another method of making "second-stage decisions" is
developed for this case.

The original motivation for this work came from an earlier paper by

the author [19], which was the award winner in the TIMS-ONR Program on

"Capital .Budgeting of Interrelated Projects.” In Chapter 6 of this paper,

a capital budgeting problem under risk was formulated as a chance-

constrained programming problem witn 0-1 decision variables, and a simple

linear inequality was introduced tha. cermitted its reduction to an
ordinary linear programming problem. It then became evident that this
approach could be greatly extended in a more general context, which is

done here.




2. Formulation

It is assumed here that the decision variables are either continuous
variables with known bounds or discrete variables restricted to two values
(taken to be 0 or 1)5 as when a yes-or-no decision must be made. It may
be assumed without loss of generality that the bounded continuous vari-
ables lie between O and 1, since this can always be effected by the
appropriate change of scale and translation of the coefficients of the
respective variables. For concreteness, it is assumed that the objective
function is E(cx).6 Therefore, the chance-constrained programming model

to be considered here is

E(ec.)x. ,

max E(cx) = 37%;

g

subject to Prob [Ax < b] >« ,
0< lef 1l for jeC,
xj =Qor l1lfor jeD,

where CND=¢ and CUD= {1, ... , n}.

5As is well-known, a general integer variable restricted to the values,
0, 1, ... , N, can also be reduced to this case by replacing the variable

N
by Z Yy where the
k=1
However, certain other objective functions also could be handled within
the framework of the following analysis. One suggested by Kataoka [21] is:
maximize y, subject to Prob {ecx < y) = g. This constraint can be rewrit-
ten in the standard form ds Prob { - cx + y <0} > 1 - g without altering
the resulting optimal sdtution (provided that ¢ has a continuous probabil-
ity distribution). Another such objective function is: minimize Var(cx),
which can be replaced by: maximize ¥y, subject to y + Var(cx) < 0. It
will be seen subsequently that this constraint is in an acceptable_form.

yk are 0-1 variables.
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Each of the elements of A, b and c¢ 1is permitted to be either a con-
stant or a random variable, and the random variables are permitted to be
statistically dependent.,7 However, it is assumed that the joint proba-
bility distribution of the random variables is not disturbed by the
choice of x. For the moment, a zerc-order decision ruile is assumed, so
that x 1s chosen without observing any of the random variables. How-
ever, other decision rules will be considered in the concluding sections.

The first step in solving this chance-constrained programming prob-
lem is to reduce it to a deterministic equivalent form. Consider a

typical constraint,

J=1

/

Assume that the expected values and covariance matrix of 8i97 co0 s

a; » by are known. Denote them by E(a ceo E(ain)’ E(bi), and

in il)’

by Vi’ respectively. Further assume that the functional form of the

n
probability distribution of Z aijxj - bi) is kneown, and that the
J=1

fractiles of this distribution are completely determined by its mean and

variance. For example, if 8590 cee s By bi have a multivariate
normal distribution then (.E; aijxj - bi has a normal distribution for
any x. 1If C = ¢, then J_L.ii aijxj has a chi-square distribution or
a Poisson distribution if aii: ceey By have independent chi-square

7However, if the random variables in different constraints are strongly
dependent, so that the probabilities of satisfying the respective in-
equality constraints are strongly dependent, then another formulation
imposing a lower bound on a single probability that all of the inequality
constraints are satisfied simuitaneously may be more suitable, albeit
less tractable. Miller and Wagner [25] have analyzed such a formulation
for a special case.

5



distributions or Poisson distributions, respectively. If the individual

n

random variables have arbitrary distributions, then Z: a
J=1

still be approximately normal by some version of the Central Limit

. - bi may

. X
1J J

Theorem, which holds under fairly weak conditions for independent random
variables and under rather strong conditions for dependent random vari-
ables. A survey of the various sets of conditions under which the
Central Limit Theorem holds is given by this author elsewhere [19, Sect.

n
4L.2]. Whatever the distribution of ( Y oa..x, - b,

13=1

F(*) denote the cumulative distribution function of

n
- B ai.x, - bi
L.j:l JJ )
- .
jv/Var > a, X, - b;}
=1 J J ]

J:

happens to be, let

5

L J=1

a..X, .
i35 i

Given B, 0 <P <1, define KE by the relationship,
F(KB) =B .

Thus, by proceeding in the usual way,8 the deterministic equivalent form

of the constraint becomes

\
n :
E<iz aijxj - b%} + Q}T\/Var .Z: a,.x, - b)<0,

oL

which reduces to

For example, see Cooper and Charnes [6] or Kataoka [21]. Also see
Hillier and Lieberman [20] for a detailed expository treatment.
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n 3 -
t X
jgl E(aij)xj + Kai\/[x y = 1V, 1 < E(bi) .

The problem now is to reduce this deterministic equivalent form
further to a more tractable form. The objective will be to linearize
the constraints so that linear programming and integer linear program-
ming algorithms can be used. The basic approach is suggested by the

following obvious result.

Fundamental Lemma: Assume that g, (x) < gg(x).f g5(x) for all admis-
sible x. Consider a solution x which is feasible if and only if
ga(x) <k, (i.e., x satisfies all other conditions for feasibility).
(i) 1If gB(x) <k, then x 1is feasible.

(ii) If x 1is feasible, then g (x) <k .
Thus, gg(x)_f k will represent some exact deterministic equivalent
form of the constraint, whereas gB(x) <k and gl(x).f k will rep-
resent linear constraints that are uniformly tighter and uniformly
looser, respectively. These linear approximations will be introduced
in the next section, and procedures for obtaining both exact and approx-

imately optimal solutions (initially with zero-order decision rules and

n
9If the functional form of the distribution ( z: aijxj -'bJ is not
J=1
known, so %1 is not known, then the one-sided Chebyshev Inequality
yields ‘ai as an upper bound on K . Hence, this bound may be
'L_ai Oll
used here when Kd is not known in order to guarantee that

n 1
Prob{ ) 8;5%; - bi} >a.. (However, it should be noted that the
J=1

bound is based on the worst possible distribution and therefore will
usually overestimate Kd greatly, so that it would tend to yield con-

straints that are considerably tighter than necessary.)

7




then with other decision rules) will then be described in the succeeding
sections.

3. Useful Inequalities

n ;
Consider again the typical constraint, Prob { z: aijxj - bi-S O> Eiai’
J=1
and its deterministic equivalent form given in the preceding section.

Assume initially that a.

RN a0 bi are mutually independent, so
that
[ n n 5
Varg Z: 835%5 - by = .z: Var(aij)xj + Var(bi).
Lj—l J=1

n
Define G? = > Var(a,,) + Var(b,), (for i=1, ..., m), and
i ) ij i

Theorem 1: Assume that 0 < xj <1 for jeC and xj =0 or 1 for

J € D, and that ajyr rr a0 bi are mutually independent. Then

L/ ’ > . = 5
(1) \/Var{ % ay X, - b.\, < Z \/02 - 0? + cijxi + Z oy -\/gi -,o?. X,

j=l J J 1", - 1 1J JED 1J dJ

+ ) o? - c?. - (n -l)oi.
JeD J

n
def—
= Ri(x)
f n . \ n
(ii) Var Z a X, - bi = Ri(x) if z: x.=n or if
\gm2 B P
8

) = T = s

’-/ ‘g i
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n
jz X,=1n -1 for any k = 1, ... , n.
F1 Y
B3

(iii) Ri(x) < h(x) for any function h(x) of the form,

Z f.(x,) + Z d.x, +a_,
jeo g jeb JJ 0

such that

\/Var[z a, x - i}ih(x)

for all admissible x and

\/Varzz 8 ¥ -;ig:h(x)-

n
if X.=n .
&

Proof: To verify Part (i), notice that

n no, o,
| var Y a, X, - b = Y ool X.* Var(bi)
n " -1 : J
A2 2 2 2 2 2
=g, - ) -y oo (1 - ) - o, - Y o (1 - x0)
i 31 i &5 ik Xk i el ik %
n /
- 2 2 2 . . .
<o, - jzi o, - 0y - Uij(l - xj) , (since /y is concave),

: [ :
=-(n-l)0'+Z/Ugi-0§+02x2+2x0+l-x.)/c?—
jec J 1iJ J 5éd J J
(since xy = 0 or 1 for jeD),
which is the desired result (after recombining terms).

Part (ii) is evident by inspection.



n
To verify Part (iii), notice that Ri(x) = h(x) = oy when ) x,
J=1

and that h(x) is a sum of separable functions of the individual variables.

Therefore, it follows from Part (ii) that

J i7i) i3
d, < - - 2 for JeD
3= o o4 Oij 5 JeD ,
so that
o, - h(x) <o, - R, (x)

for all admissible x, so that

n(x) > Ri(x)

This completes the proof of Theorem 1.

Corollary 1 to Theorem 1l: In addition to the assumptions of Theorem 1,

n
assume that C = ¢ and Z: Xj < n, <n -1, Let Jl be a subset of
J=1
{1, ... , n} containing exactly (n - n ) elements such that

1
g 2 2 .
Jl = {chij < Oik for all kéul} ,

and define

"
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s
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s,
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l,_l
™
Co.
1l
=
l_l

10

=n,

2 2 2 22 2 2
£.(1) - fj(xj) 5\/ci-oij+oij(l)-\/o.c. +g, .x, for O < %, <1 and jeC ,
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- - ‘- -\ - ; -} -"
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Proof: Under these assumptions, the two functions reduce to

J=1 J=1
2 : z 2
Ry(x) =0, - ¥ (1 - Xj)l: it O\ 9 - 013]
J=1
f n \
Let S =»ﬁx|xj =0 orl, Y X, <0y,
=1 J
’ n
g(x) = R, (x) -\/Var<3§ ay % b } s
d = min g(x) ,
XeS
so that
Vel
Var{jgl 8% - bi>§Ri(X) -4 .

Since Jy 1s a concave function, it is evident that g(x) must be
n

minimized by some solution x such that z: xj =n;.
J=1

Therefore, it only remains to show that, among the set of solutions

0,

n
that Z x‘j =n 1,

1,
J=1
since this will show that a; = a.

such

if JeJ
if JéJ

1,
1

Let J, Dbe an arhitrary subset of ({1, ... , n} that contains exactly

2
(2)

(n - nl) elements, and let x be the solution such that
x(z) ) 0, 1if J e J2
J 1, if 3£ 3,
Let‘ J3 = Jl - Jl n J2 and Ju = J2 - Jl ndJ., 1let n5 be the number of
elements in J5 (or Jh)’ and let hB(l)’ coo h5(n3) and

hh(l)’ cee hh(nh) be the elements of J, and J,, respectively,

3
11




Finally, define

hh(k)’ if J = hy(k) for some k=1, ... , n

1J

)
[ n n
o § e (o NG) VI
J=1 J=1

n ! n
(1)( 2 2 \ 2 (1), 2
=40, - Z: (L-x;""V] 0. - Vo, -0,. - \fo,- z: (L-x"")g"
i =1 J 1 171 | i 51 J iJ
3
2 2 2 2 . e
= Vo, = Y 0., - Va,=) o..-)( -0, )
1 J’eJl 1J 1 vjeJl 1) k=l )hu(k) l)h5(k)
2 2 2 2 - 2 _02 )
B z: %1 013 9 013 Oij' ij
Jed
3
n / J -1 /
2 2 2 2 2 2 2 2
= Ve 2 oy 2 05Ty '\/Ul' 137 L (T35 7%5)
J=1 'eJl k=1 jeJl k=1
{
[V -0, - -\/0'?,-0'2. (0’?.,- 2 )] '
13 1J 1J 1J j
>0,

since ¥y is a concave function so that each term in the summation is

nonnegative. This completes the proof.

12
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Corollary 2 to Theorem l: Under the assumptions of Theorem 1, the follow-

ing statements hold.

(i) Any solution x that satisfies the set of constraints,

Ri(x) S_E(bi), for i

i}
e
-

=

[0/

n
2 E(ai.)x_ + K
=1 Jd J 1

0< xj <1, for

[
(]
«

-

necessarily is a feasible solution.
(ii) 1If the additional assumptions of Corollary 1 hold, then (i) will

still hold after replacing Ri(x) by [Ri(x) - ai] for i=1, ... , m.

(iii) 1If, for each i =1, ... , m, Kd > 0 and each nonlinear term

i
2 2 2 2 | . . . . .
- + -
‘Vgi Uij Ginj in Ri(x) is approximated by a piecewise-linear
function that coincides with'vgg - 0?. + 0? xg only at x, =0, x, =1,
i 1J 13 J J

and at the points where the slope of the piecewise-linear function changes,
then both (i) and (ii) will still hold. Furthermore, each of these
piecewise-linear functions necessarily is convex.
n

(iv) Any feasible solution x such that .§; Xy =n or jZﬁ xj =n -1
for any k=1, ... , n necessarily satisfig; the set of cgégtraints in
(i). Furthermore, if X, = 0 also, then this statement still must hold
after introducing the piecewise-linear functions described in (iii).
Proof: Given the Fundamental Lemma, all of these statements are an
immediate consequence 6f Theorem 1. The convexity of the piecewise-linear

functions described in (iii) is demonstrated simply by noting that

13
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To gain some insight into the goodness of the approximation introduced

by Theorem 1, consider as an example a case where n = 5, E(aij> = 10 and
Var (aij) =10 forall j=1, ..., 5, E(Bi) = 50 and Var (bi) = 50,
Ka. =2, and C = 0. For this case, the following numerical results are
obtained.

- ,
E: xj \/\’a?gjg:laijxj_bi} Ri(x) ‘gE(aij)xj+Ka\/\’ar{j§1aijxj -b} ZE(a Yx +K R, (x)

J=1 J=1 i J=1 &4
5 10 10 70 70
L 9.487 9.487 58.974 58.974
3 8.944 8.974 47.888 47.948
2 8.367 8.461 36.734 36.922
1 7.746 7.948 25.492 25.896
0 7.071 7.435 14.142 14.870

Thus, the approximation introduced by Theorem 1 is excellent here for the

larger values of z: X,, which is where accuracy tends to be important.
Whereas the above results provide uniformly tighter constraints,

Theorem 2 below will provide uniformly looser constraints.

Theorem 2: Assume that 0 < xj, <1l for jeC and xj =0or 1l for je D,

and that a(i) - bi are mutually independent. Then

in

(i) there exists a unique real constant Vi’

Var (b,) + max <02 } <v, < U? , such that
i . 13 i="1
Je(l 0}

‘\/_\r)+ Z[\f \/v - ..:l=0’.

1

14




(i1) if y>v, (i.e., if"\/Var (bi) + % [‘Y/}T-_\/y - cijjgai )
J=1

then

h(x, y) def— y Vy oy +0’ xe -\/y cr}

jeC

n
S'\/Var< ﬁz:]_ aijxj —bi> .

wo

JeD

n
(iii) h(x, y) iW/&ar a, .Xx.-b. if x, =0 or if
g jgl 71 ng 3

n
y=v, and jg& xj =n

Proof: To prove (i), let
— n 2 ‘
gly) = Vvar (b.) + Z |:Vy \Vy-0, :] for y > max 0..) ,
i . iJj - . ij
J=1 Jje{l,...,n)
and note that g(y) must be a strictly monotone decreasing continuous
function since Wy 1is a strictly concave function. Therefore, by appealing

to the Intermediate Value Theorem, it is only necessary to show that

g(Var (b.) + max {0?.}) >0, > g(o?)
i . ijf’ = "1 = i
jef{l,...,n)

However, this becomes evident by assuming (without loss of generality)
that c?l = max {E?,} and then expressing Ui as

je(l,...,n}

/___—n\/ 5o 2 |

o) Var (b.) + jZi Var(b z:c -\/Var (b.) +kZiclk -01J ,

since

15




TJVar (bi)+0? - W/Var (bi)+0? —U?.

il il i
T LT 7
- 2 -\ 2 2
> Var (b)+ Y o, -\ Var (b )+ Y 0 .m0
-\ 1 k:l 1J ¥ 1 k_:l lk 1J
>0, - O'?-U? .
-7 i i

To prove (ii), note that, for fixed x, h(x, y) 1s a strictly

monotone decreasing function of y. Thus, it is sufficient to prove (ii)

for y=v,. It will now be assumed that 0? = max /o?.>.
i in . ij
Je(1l,...,n}
First consider the case where
J-1
A > max Var (bi) + Z c?kxi + 021_
je{l,...,n) k=1 J .
n-1
= Var (b.) + z: o, X2 + c? .
i ik k in
k=1
Then
T n / 3 j-1 :
/ 2 2 . 2 2
h(x, Vi) < \Var(bi) + .Z:[\ Var(bi)+ E:Uikxk - Var(bi)- Z:gikxk]
j=1 k=1 k=1
/ n

=/ Var{ )y a..x.-b,
W/ =1 ij7J 1
Now consider the complementary case where

v, < min Var (b,) +
Je{l,...,n} * J
‘ J-1
. min Var (b,) + o
je(l,...,n) k=1
n-1

2 2
Var (b,) + kza N

5-1
2 2 2 \
%3 ~ kgl iy (1-%)

7

s
HPﬂ

n

2 2 2

iK% T L. Yk
k=Jj

n °

16




Then
- 2 — 2
h(x,vi) =0, - j%é i - vi-cij(l-xj) - j%£ [Y;; - Vvi-cij (l-xj)
n\/ oo o 2\/ P 2
<o, - JZ& Var(bi)+ Zicik-kgidik(l-xk) - Var(bi)+k2igik-k2igik(l-xk)
n )
= \Var jéﬁ aijxj-bi? ’
{ /

which completes the proof of (ii).
Part (iii) is evident by inspection.

Corollary to Theorem 2: Under the assumptions of Theorem 2, the following

statements hold.

(i) 1If u, <v, forall i=1, ..., m, then any feasible solution

X necessarily satisfies the set of constraints,

n
D E(aij)xj + Ka h(x, ui) gE(bi) , for i=1, ... , m,
=1 i

x,=0 or 1, for JeD.
n
(i1) h(x,O'Ei) = Ri(x) +\/Var(bi) + (n-1l)o, - y U?-O'ij , for i = 1,...,m.
=1

(iii) If, for each i =1, ... , m, Ka > 0 and each nonlinear term
i
“Jui - cij + c§3x§ in h(x, ui) is approximated by a convex piecewise-

linear function that never exceeds WJui - 0? + cfjxi; then (i) will still
hold.

(iv) Any solution x that satisfies the set of constraints in (i)
n
necessarily is a feasible solution if ) x, =0, or if u; = v,
n J=1
for i=1, ... m) and X, = N
( 2 ) ) ng J

17



Although no explicit solution for the v has been given, they can be
readily determined (within a specified error) by standard numerical methods
since h(x, y) 1is a strictly monotone decreasing function of vy.

To illustrate the applicaticn of Theorem 2, consider again the numerical

example introduced following Theorem 1. TFor this case, V;. =\/v, - U? =
i i id

0.5858 (so v, = 77.94), which yields the following results.

n n
Yo, hix, v @ Y E(a, Jx, + K hix, v,)
=Y i =1 13779 ol i
5 10 70
L 9.41L 58.828
3 8.828 47,656
2 8.2L3 36,486
1 7.657 25.31L
0 7.071 14,142
/ n K
Comparison with the values of \/Var{,; a..x. -b.} and
n = JTr1JJd i
[Z E(a,.)x, + K '\/Var Y oa, X, - b.\] given earlier indicate that
§=1 iJ J ai 5=1 13 J JJ

this is an excellent "uniformly looser" linear approximation.

Now consider the case where a,., ... , &

, b, are not mutually
ij i

independent, so that

n T - ""X—'
Var{ > a,.x. - b, =,—x , = 1 lV, L l
)?:l id 3 i L 11 -1

- 2 n n n
= Z:Var(a..)x“ + Var(b,) + ) D Cov(a. ,a. )x.x - ) Covia, .,b.)x.
j=1 1id J 1 H =1 13771k Tk =1 13771773
k£
Lemma 1;: Define
i 2
Q4 = Kii Var (aij) - LF(aiJ)]I , for j=1, - , 1,
Bijk = Kii Cov (aij’aik) - E(aik)D(aik), for 3,k =1, ... n (k#)) ,
18




L]

=
1]

2 .
2E(bi)E(aj) - KO[i Cov (aij’ bi) , for =1, ... , n

; [E(bi)]z - Kii Var (b,)

b

1J

-
1l

1

Then, if Ka > 0, the constraint,

[

™~ B

N y
- (
. E(aij)xj + Kai\/Varﬁjgl aijxj biP < E‘bi) ’

it

o

is equivalent to the pair of constraints,

n 5 n n n

Yoo X+ Y By XX + Y yo.x, <r.,

551 iJ J =1 551 ijk 3k 3= i37J i
KA

Proof: Rewrite the original constraint in the equivalent form,

n n
K \/Var Z a,x, - b,y <E(b,) - y E(a,,)x,
O‘i =1 i3 i i 51 1373

This constraint is unaltered by squaring both sides,
A n | n 2
K Var( ) a.,.x,-b.)<|E(b,) - Y E(a, )x.:] )
oy =1 WdH |: SR s B S A

n
provided that E(bi) -y E(a,
=1

n

Substituting in the expression for Var{Z aijxj - bi which was given
J=1

preceding the Lemma, and then rearranging terms yields the desired result.
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Theorem 3%; Assume that O < Xj <1 for

(1)

(iii)

n n

JeC and XJ =0 or 1l for Jj e D.

n n n n
Z By XX, < Y Y Bl - Z Z (B. . +min<5,, ,O}) (1-x.)
Py R ey B L Bl o e S B ) e M 1k J
k# ] k£J K]
gef™U, (x)
n n n
> By gxx =U/(x) if ¥ x, =mn, or if
g1 g;y ek =1 9
k# ]
n
Bigx < 0 forall j, k=1, ... , nlk#j) and jg& x;=mn -1
Itk
for any k=1, ... , n, or if Bijk >0 for all
n
J, k=1, '°°:n(kféj) and ZX.=O°
&
J
If B1 5k <0 forall j, k=1, ... , n(k £ J),

then Ui(x) < h(x) for any function

h(x) of the form,

n
h(x) = a_+ Yy oax, ,
o & 4

such that
n n
B. o X.X
151 ijk Jk
K# ]
for all admissible x and
n n
YooY By XX
K&y gop MK K
k#
n
if Z X, =n
=1 Y
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Proof: To prove (i), observe that

n n
kza jZi 1355%% T ; z: Ble (1 - (l-xk) - (l-xj)xk]

k#J k%J
n el
Therefore, since Bijk = Bikj’ so that g; Z: 1ijk = kgﬁ jéﬁ Bi3x*5 2
ki J ki
it follows that
n n n [ n n n N
YooY B XX = z: z: B. (1-x,) - B X, |(1-x.)
K1 =1 ijJkjk le jgi k;i ijk J jgi kgi ijk k
k#j k#a | k#3 K J
n n nf n
< Z Z . . Z (B, ., + min {B,,., O}) | (1-x.)
oy R ijk el Bl ijk ijk J
k#J k£ S

as was to be shown.

Part (ii) is evident by inspection, and (iii) follows immediately from {ii)-

Corollary 1 to Theorem 3:

n X
that ng < .Z: X <n,. Let (Bijpj(l), ceo
of Bijio vt 2 Biy(5-1)7 Pij(s+1)’ » Bisn
Pigp (2) 2 Pigp, (n-1)w DOTRE
J J
n n-1 n-1
e..= ) B + Y maxp., ,0) +
RO Vo MR e | < 1ipy (k)77 S
: 0
k£ j
n n
(1) Y B.oxx < Y B.. Ze 1-x,
®=1 ijk ik — =1 le
k# J k# J
21

Bijpj(n-l))

such that

be a

B
J J

In addition to the assumptions of Theorem 3, assume

permutation

p.(1) 2

mln{éijpj(k)’o}’ for j=1,...,n.
1




(ii) Define Aij = eij _[k=. (Bijk
k# J

let s, be the sum of the (n-nl) smallest elements of (Aﬁl""’Ain)'
n
\
Then k%i jZi Bijkxjxk < Ui(X) -85
J =
Proof: The key step is to note that
n
Z Ble K = Z: max 1 K 0} X, * Z min {gle, 0) X
k;éJ k# 3 k#a
n-1 \ n-1 1

> max ( 8. . ; O) + min 5 s .
kzngn 1 <1Jpj(k) / k—gn \ 58 F

0]

Part (i) then follows immediately by using the expression obtained in the

proof of Theorem 3,

n n n n n n n
T ) jE Pisk - L; ZBle:](l—xj) - L ZSle k(1)

k=1 =1

k=1 J=1
kA o
After noting that Aij >0 for all Jj and that 2: (l—xj) > (n-nl)

Part (ii) then follows from Part (i).

Corollary 2 to Theorem 3:

(i) Any solution x that satisfies the set of constraints,

n - n
Yoo x,+U(x)+ Y 7,.x, <r,, for i=1, ... ,m,
=1 i3 J i =1 i34 i
n
.Z: E(aij)xJ < E(bi),for i=1, , m,
J=1
0 < Xj <1l , for jeC,
Xj =0 or i,for J €D,
necessarily is a feasible solution.
22
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(ii) If the additional assumption of Corollary 1 holds, then (i) will
n

still hold after replacing Ui(x) by either Z Z Ble Y e ij(l-xj)
. K25/ =1 B
or [Ui(x) - Si] for i=1, ... , m.

(iii) If C = ¢, then both (i) and (ii) will still hold after replacing

2
x, by x, for =1, ... n.
j y J VJ Y 2
(iv) Assume that C # ¢ and that, for i=1, ... , m, Q 4 > 0 for each

j € C. Suppose that, for each J € D, x? is replaced in (i) by X35
and that, for each j e C, xi is approximated in (i) by a piecewise-
linear function that coincides with xi only at Xj = 0, XJ =1,

and at the points where the slope of the piecewise-linear function
changes (so that this piecewise-linear function necessarily is convex).

Then both (i) and (ii) will still hold.

(v) A feasible solution x necessarily satisfies the set of constraints in

(1) 1f (1) z:xJ =n, or (2)5ijk <0 forall j, k=1, ... , n(k#j)
J=1
= = P < €
and # xj n-1 for any k = 1, , n, or (3) Bijk S 0 for all
JFk n
3, kK= 1, ... , n(kf£j) and z: X, = 0. Furthermore, if x_=0
=1

also in condition (2), then this entire statement still must hold
after making the changes described in (iv).
Proof: Given the Fundamental Lemma and Lemma 1, these statements are an
immediate consequence of Theorem 5 and Corollary 1.

Theorem 4: Assume that 0 < xj <1l for JjeC, xj =0 orl for JebD,
n

and n, < X <n. Define pﬁ(k) as in Corollary 1 to Theorem 3, and let
=1 7 °
no-l nl
Yio= Y Bas + ) max (B, s O} , for j=1, ... , n.
3 oy Tidey(k) K=n, 14p (k)
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Then

n n

S B XX Z: 7]
K=1 §=1 ijk J k ij J
k;éj

° 1
Proof: Note that 2: By S <7y fkyr 80 that

k;éj

as was to be shown.

Corollary to Theorem 4. After imposing the assumptions of Theorem b,

Statement (i) and its extensions in Statements (iii) and (iv) of Corollary
2 to Theorem 3 will still hold after replacing Ui(x) by Z: 71J 5

The decision whether to use Theorem 3 or Theorem 4 to obtaln a linear
upper bound on kZi Zi Ble 3 k depends largely on the anticipated values
of E: x Thek%gunds provided by Theorem 3 and Corollary 1 to Theorem 3

tend to be relatively tight if Z: Xj is relatively close to n. However,
j= n
if the interesting feasible solutions tend to yield values of z: x, that
j=1
are relatively small with respect to n, then the bound provided by Theorem

L4 may be better, especially if (n, - n

1 O) is not large and the Bijk are

not too variable. To illustrate, consider once again the numerical example
introduced after Theorem 1, and impose the additional restriction that

JZ: x, < 5. Thus, aij = - 60, Bijk = - 100, 7ij = 1000, r, = 2300,
iJ =
the following results.

e - 700, s, = - 200, and 7{3 = - 100 for all Jj, k, which yields

2k




n n n

5=1 jizl 3=1
J

Lo 1P| L 2P

€. .
iJ

(1-x) Z:rlJ ;

o n
Ti” z:ala J Jgﬁ 1373

- 200
- 600

Whereas both

+ 100
- 600

Theorems 3 a

+ 200
- 600

- 200
- 300

nd 4 provided upper bounds on kZL ZLB

+ 420
- 540

i3k 5%k’
k+#Jj Je

Theorem 5 below will provide a linear lower bound on this function.

Theorem 5:

and n z& Define p.(k)
0 — J J
N.= nl’ ir J eC and let
J 1 n,-1,if j e D,
no-l Nj
L= B..
% kZ{ 1Jpj(n-k)
Then
n n n
(1) Y a,.x. <Yy ¥ B, xxXx
TR Rl Vo R 1k J &k
k#J
n n n
(i1) Y aq,x, = Y Y B,
By TR R ] iJk J k
k#
Proof: Note that
Z B1Jk k! 73 qijxj ’
k;éj
so that
Y|y
Z Z B B
1 5 1K kS 51| x=1
k7 j k£ j

Assume that O < xj < 1 for

n
N

x, =0

J e C, 3

for =1, ... , n,

—_—

This verifies (i), and (ii) is obvious by inspection.

25

or 1 for

}, for J =

.
' kgéo - \Bijpj(n-k)’ °

J €D,

as in Corollary 1 to Theorem 3%, let



Corollary to Theorem 5:

(i) 1f tij < qij for all i, (i =1, «.. ,my J=1, ... , n), then

n
any feasible solution x such that n, < y x
J=1

necessarily

satisfies the set of constraints,

Lot 5 (e
a..X. T t,.+ 7. )x, <r, , for 1=1, ... , m,
j=1 1J J 571 1J Y 1
n
=§; E( 1J)xj < E(bl) , for i=1, , M,
J=1
0 < xj <1, for jeC,
Xj =0 orl, for jeD.
(ii) Assume that a 5 >0 for i=1, ... ,m and J e C. Suppose that,

for each J e D, x? is replaced in (i) by Xj’ and that, for each
jec, xg is approximated in (i) by a convex piecewise-linear
function that never exceeds x?. Then (i) will still hold.

Referring again to the numerical example used to illustrate Theorems

3 and 4, g = - 200 for all j, so the following results would be
obtained.
NEN D) ) AR
X B.. . X.X q..X, |Tr, - Oy X, = Y. .X.
551 J K=1 =1 ijk j k 521 133 i =1 iy I 551 1373
k£
2 - 200 - 400 + 420
- 600 - 600 - 540

4, Exact Solution Procedures

To explore how to find an exact optimal solution to the chance-
constrained programming problem formulated in Section 2, three exhaustive

cases will be considered.
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First, suppose that D = ¢, so that all of the decision variables

are continuous variables. Kataoka [21, pp. 194-5] has shownlo that

[xt, - l]vi[;i] is a convex function. Therefore, if X >0 for
' i
i=1, +.. , m, 1t is known that the deterministic equivalent form of

the problem is an ordinary convex programming problem, for which there
exists a number of algorithms. These include the ones developed by Rosen
[30], Zoutendijk [38], Kelley [22], and Fiacco and McCormich [13, 14].

Now consider the case where C = ¢, so that all of the decision
variables are constrained to be either O or 1. This case may be
solved in a straight-forward manner as follows. First, replace the
deterministic equivalent form of the set of constraints by a set of
uniformly tighter linear constraints. If its assumptions are satisfied,
such sets are identified by Parts (i) and (ii) of Corollary 2 to Theorem
1. Otherwise, use one of the sets identified by Part (iii) of Corollary
2 t0 Theorem 3 or the Corollary to Theorem 4. Then find a good suboptimal
solution to the resulting integer linear programming problem, which may be
done by using one of the suboptimal algorithms developed by the author [187].
This solution necessarily is feasible for the original problem. Next,
replace the deterministic equivalent form of the original constraints by a
set of uniformly looser linear constraints. Such a set may be obtained
from the Corollary to Theorem 2, if its assumptions hold, or from the
Corollary to Theorem 5. This yields an ordinary integer linear program-
ming problem whose set of feasible solutions includes all solutions that

are feasible for the original problem. The final step is to apply a

loAlso see Sinhal [31] and Van de Panne and Popp [35, pp. 421-2] for
related investigations.
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slightly modified version of a bound-and-scan algorithm developed by the
author [17] for the integer linear programming problem. Given a good
feasible solution, this algorithm repeatedly finds successively better

ones until an optimal solution is reached. Therefore, the one modification
that is required is that a new "better feasible solution'" should be dis-
carded if it is not feasible for the original problem. The final solution
yielded by this modified algorithm will then be the optimal solution to the
original problem,

Finally, consider the general case where there exist both continuous
and integer decision variables. This problem is considerably more 4diffi-
cult than the special cases discussed above. However, if K >0 for
i=1, ... , my then an algorithm recently developed by Veinétt [36] is
applicable. Although its ccmputational efficiency is untested at present,
this algorithm in principle will converge to the optimal solution for this

problem.

5. Approximate Solution Procedures

Despite the availability of the exact solution procedures described
above, approximate procedures that expedite computation and sensitivity
analysis alsc are of considerable practical interest. Such procedures
will be described below. To clarify the exposition, the requirement that
Xj = 0 or 1 rather than O S.Xj <1l for JeD will be ignored until
the latter part of the section.

A good "definitely feasible" solution may be obtained relatively
easily by applying the results given in Section 3. The first step is to
replace the deterministic equivalent form of the set of constraints by a

set of uniformly tighter piecewise-linear constraints. This new set may
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)

be selected from any of those provided by Part (iii) of Corollary 2 to
Theorem 1, Parts (iii) and (iv) of Corollary 2 to Theorem 3, and the
Corollary to Theorem 4 for which the assumptions hold. The optimal
golution to this new problem is the desired "definitely feasible" solution.
It may be obtained by converting the problem to an ordinary linear program-
ming problem by the well-known separable convex programming technique
(e.g., see Hadley [16, Ch. 4]) and then solving it by a streamlined
version of the simplex method. For example, Hadly [16, pp. 126-9] de-
scribes how to use the decomposition principle to simplify the computa-
tional procedure.

The above approach is a conservative one in that many "barely
feasible" solutions are excluded from consideration. It isn't always
desirable to be this conservative, especially since the ai often represent
only rough guidelines that were set on a subjective basis. An opposite
approach would be to consider all feasible solutions plus some "barely
infeagible" ones. This may be done by proceeding exactly as before except
that the new set of constraints would be selected from those provided by
Part (iii) of the Corollary to Theorem 2 or Part (ii) of the Corollary to
Theorem 5. This will provide a solution which yields a value for the
objective function that is at least as large as that for the optimal
solution but which may not be quite feasible for the given values of the Q -

Another approach that may be more satisfactory is to combine the above
two. One way to do this is to search for the best feasible solution along
the line segment between the "definitely feasible" solution and the “nearly
feasible" solution described above. Another way is to search for the best

feasible solution yielded by using a weighted average of the two sets of
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constraints. If these two sets differ only in the right-hand side of the
respective constraints, then the solutions may be obtained easily by
standard parametric programming procedures (e.g., see Hillier and
Lieberman [20])oll
Still another approach is to use the solution obtained in any of the
above ways to construct a better set of approximate linear constraints,

which are then used to find the final soclution. TFor example, let

x* = [x¥, ... , x;]T he the "definitely feasible" solution described
n n n n

above. Then one may replace Z& Zi B...Xx.x b Zﬁ Z
7 P §=~ i= ijk jk v J= g— 1kak
+]

in Lemma 1 and use the resultinébpair of constraints to replgce the
corresponding original constraint for each i =1, ... , n. Alternatively,
the set of constraints described in Corollary 2 to Theorem 1 may be

modified by replacing R.(x) by

e \
% > v;i-ﬁg+c. Bv -\v, - o ]X+d X

2 jeC J J€D /
\\—_ ~ " ‘ /
for each 1 =1, ... , m, where v, = Var z: - ,\ and 4. is
i Lo i J by i

|

4

llFor this case, an upper bound on the difference between the value of the
objective function for the optimal solution and the selected solution may
be obtained easily as follows. Let M De the number of functional con-
straints, and let [yi, coa yﬁ]T be the optimal dual solution corre-
sponding to the selected primal solution. Let Abi be the difference
between the right-hand side of the ith functional constraint for the
'fearly feasible" solution described above and that for the se&ected
solution, where i =1, ... ; M. Then this upper bound is izi y?ébi~
(See the section entitled "Bounding Procedure for Group 3 and 4 Variables"
in [17] for the justification of this result.) In general, the value of
the objective function for the "nearly feasible" solution also provides an
upper bound on the corresponding value for the optimal solution.
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I
the constant required to make this new function equal to x/;ar iZAaijxg—b;X
when x = x*¥. For either case, one would then apply the separa;le convex J
programming technique and solve as before. It appears that the resulting
solution should tend to be nearly optimal and either feasible or sufficiently
close to feasible for most practical purposes.

All of the above approximate procedures reduce to solving a linear
programming problem. This has important\advantages over the exact solution
procedures described in the preceding section. One is the relatively high
efficiency with which a linear programming problem can be solved originally
and then subjected to sensitivity analysis. Another advantage is the
availlability of linear duality theory for analyzing the problem. Thus the
optimal dual solution, which is an automatic by-product of the ordinary
linear programming calculations, is available for further guidance and for
study of the original policy decisions made when constructing the chance-
constrained programming model.

Now consider how to deal with variables that are restricted to be
either O or 1. The linear programming solution procedures described above
may assign fractional values to some of these variables, so that some
modification is required. The simplest approach is to attempt to round
such variables up or down in such a way as to obtain a feasible solution
with a relatively large value of the objective function. Fortunately,
according to a theorem due to Weingartner [37, pp. 35 ff.], the number of
fractional variables in these linear programming solutions cannot exceed
the number of functional constraints. Therefore, if m 1is not large,

there can only be a relatively few variables that will need adjusting.
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Furthermore, since the final solution needs to be feasible only for the
original problem, and not for the approximating linear programming problem,
it may be possible to increase the value of the objective function over
that for the optimal linear programming solution.

A more systematic approach to the integer or mixed integer problem is
to formulate an approximating linear programming problem as described above
and then apply one of the available algorithms for the pure integer or
mixed integer programming problem (see Balinski [1] and Beale [2] for a
survey of these algorithms). However, it may require more computation time
than can be justified, especially considering that the resulting solution
need not be optimal for the original problem. A more efficient procedure
is to instead apply a suboptimal integer programming algorithm, such as
those developed by Reiter and Rice [29] and (if C = @) by the author [18].
The Reiter-Rice algorithm also can be applied directly to the original
problem in its deterministic equivalent form, which should tend to yield a
slightly better solution with somewhat less efficiency.

6. Linear Decision Rules for Continuous Variables

Now consider the situation where the values taken on by certain of
the random variables will become known before some of the decision variables
must be assigned values. It is highly desirable to formulate and solve
problems of this type in such a way that the ultimate decisions will be
partially based on the new information that has become available. As
indicated in Section 1, one way to do this i1s to formulate the problem in
terms of choosing a decision rule,

x = V(A, b, c)

where ¢ 1is a vector-valued function to be determined.
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This approach becomes quite tractable when V¢ 1is restricted to the

class of linear decision rules. In particular, let the components of  be

m n m
= + + = o e e
X, igi jgi uijkaij ig& Vikbi Vi s for k = 1, , N,
where u,, and v, are decision variables, except that they are set
ijk ik ’

equal to zero if k ¢ D or if X must be assigned a value before

observing aij and bi’ respectively; wk is a decision variable if

keD or if Xy must be assigned a value before observing any of the

aij and bi’ and it is an arbitrary constant otherwise.
Since a general linear decision rule may assign a value other than

O or 1 to X it has been necessary to reserve these rules for only

the continuous decision variables. Therefore, if Kk € D, then X = W

only so that it does not depend on the values taken on by the aij and bia

An alternative approach that does permit deferring O - 1 decisions will

be described in the next section.

To solve the chance-constrained programming problem with the indicated

linear decision rule, notice that

n n m n m
e X c u.,.a., + v, b, + W
Z Kk Z k [:12 jgl ijk i igl ik1i k:l

k=1 k=1 =1
n m n n m n
= Yy ecoa..u + Y Yy ebv, + Y cw o,
s (i B TR B L o T FELE R e LSS

and, similarly,
n m n n m

n n
a - b, = a.a,. u, . + a.b,v, + a,. . w,_~Db, .
kgi Kk T Pt kgi iZi jZi tkoij 1k kz& iz& tk’i' ik kgi tk'k " “t
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Therefore, if the ck are statistically independent of the aij and bi’

and if the restriction that decision variables lie between O and 1 is

ignored, then the original model reduces to

n m n n m ( \ﬂ . n E( )w \K
- }kga lza Jz%-E(CK)E(aij)uijk ! kgi igi PleBy Vi kZ£ k k} ,
subj;ct to
[n m n n m n
e gﬁ 1Z£ Z:atkaijuijk ' kéﬁ igﬁatk 1Vix Z:atk kPt S Of 2 Qo
4
\ for t =1, R

wk =0 or 1, for keD

Note that the decision variables here play the same role that the X
played before with the zero-order decision rule., Similarly, the corre-

tkaij)’ (atkbj)’ and a,, DoV play the same role as the

a before. Therefore, except for two added complications, one may

sponding (a

proceed exactly as before to solve for the decision variables. These
complications are (1) it is now more difficult to determine the expectation,
variance, and covariance terms, and (2) the requirement that the decision
variables must lie between O and 1 still remainsg to be taken into account.
The remainder of the section will be devoted to discussing these two
complications.

To illustrate the former complication, consider how one would find the

(ag2sy)
Assume that the elements of A and b are mutually independent, that the

expectation, variance, and covariance terms involving only

expected value and variance of these elements are known, and that Uik = 0

for all i1 and k. Then

3L




Blagay g0 = Ul lagdBlay )
and )
Var(a, & 1j 1Jk) = uijk B(( tkaij)g} C 13)2}
L
= uijkbE( ik)E(a ) L E(a tk) E(a )2:| :
= uijk-‘Var(atk)+E(atk)2)‘Var(aij)+E(aij)2. -E(atk)EE(aij)g]
If k # k' and either i £ i' or j# j', then Cov{atkaijuijk,

atk'ai'j'ui'j'k'] = 0. However, if k = k' instead, then

Covia @i % gk Bexiry iy

: ¢ Y ) -
4 gl g (Bl - Blaga, ))aga, o Blag@yig)))

2
= Uyl Bag@y gty - Blaga JB(aga, )]
=14,,.u E(a. ,)E(a )[E(a2 ) - E(a )2]
137 g g/t By /BBy tk
= uijkui'j'kE(aij)E(ai’j') Var (atk)

If k#k', but i=1i' and J = J', it follows similarly that

Cov{a E(a,,,) Var (a, )

3% gk Stee®i 3 k) = uijkuijk'E<atk) tk' 13

(The corresponding expressions involving atkbi and atk are obtained in
the same way.) These results have been based on the assumption of
independent random variables. If this assumption does not hold, it then
becomes necessary to use the joint probability distribution of the elements

of A and b in order to calculate these expectation, variance, and

covariance terms.
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Now consider the former requirement that bounds of O and 1 be
imposed upon the decision variables. If the objective is to obtain an
optimal decision rule by the solution procedures described in Section b,
then these lower and upper bound constraints play no essential role and
can be omitted safely. However, this is not the situation if an approx-
imate decision rule is being scught by means of the inequalities presented
in Section 3, since these inequalities are based critically on the variables
lying between O and 1. Therefore, it is necessary for this case that
the current decision variables te so constrained, although the solution
procedure would not require that the replaced variables - the X, - lie
between these bounds. However, unless appropriate adjustments are made,

arbitrarily imposing such constraints on the u,, and vi may eliminate

ijk k

interesting decision rules from consideration. These adjustments are
discussed below,
One may essentially insure that all of the interesting values of the

uijk and Vik are nonnegative merely by assigning sufficiently small
(possibly negative) values to each Wk that is not a decision variable.

A scaling factor may then be used to essentially insure that these
interesting values do not exceed one. In other words, each 855 (and bi)

(and v,

1k> would be multiplied and divided,

and the corresponding uijk
respectively, by a sufficiently large constant (not necessarily the same
for all a,., and b.,). This scales down the u., and v, without

id 1 ijk ik
changing the problem. After sufficient translation and change of scale of

the decision variables, the lower and upper bound constraints may be

imposed without seriously reducing the set of feasible solutions.
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This process of translating and scaling the decision variables may be
conducted somewhat by trial and error. TFor example, a trial approximate
solution might be obtained after a modest amount of scaling. If many of
the variables in this solution equal one, it would then be evident that
additional scaling is required to reduce the distortion caused by adding
the upper bound constraints. On the other hand, one should be careful not
to scale down the variables too far, since this would cause the difference
between the number of decision variables and the sum of the variables to
be relatively large. The approximations introduced by Theorems 1 and 3 in
Section 3 can deteriorate seriously if this difference becomes too large.
If a large difference is unavoidable, it may be best to use the approxi-
mation introduced by Theorem 4 instead. It may also be very desirable to
use the methods described in Section 5 for improving upon an initial
approximate solution.

7. Two-stage Decision Rules

The linear decision rule approach described in the preceding section
provides a convenient way of permitting the deferment of decisions rep-
resented by continuous decision variables. However, it does not apply to
discrete decision variables, This section develops an alternative approach
which, although less precise and flexible, does apply to both continuous
and discrete variables. It is motivated by the two-stage formulation of
linear programming under uncertainty with discrete probability distribu-
tions that was developed by Dantzig [11] and others (see Naslund [27] for
references to related work). What is presented here is essentially an
extension to include continuous distributions in a chance-constrained

programming format.
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Suppose that certain of the decisions must be made immediately

(stage 1) and the remainder can be deferred until some later point in time
(stage 2) when the values taken on by certain of the random variables will
be known. Let x = [z], where the elements of y and 2z are the stage 1
and stage 2 decision variables, respectively, and let c¢ = [cY, CZ] be the
corresponding partitioning of c¢. Let Dy and n, = N-Ny be the number
of elements of y and 2z, respectively. Similarly, partition the set of
functional constraints,

Prob {Ax < b} > a ,
into those constraints (if any) involving only the stage 1 variables,

Prob [AYy < bY} > Ay
and the others,
Prob {AYZy + Azz < bZ} > o -

Therefore, the original formulation of the chance-constrained programming
problem can be written as

max E{CYy + CZZ} s

subject to Prob {AYy < bY} Z'aY P

+
Prob[AYZy AZZ < bz} > Ay s
0 < Xj <1, for JjecC,
xj =0 or l, for jeD

Let M Dbe the array,

v °z o
M=| A, 0 b |,
Ayg A7 Py
- ]
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so that M has a multivariate probability distribution. Let R be the
random vector whose elements are the random variables whose value will be
known when 2 must be specified, and let n, be the number of elements
of R. Let S ©be the range space of R, so that S 1s the set in n_ -

dimensional Euclidean space consisting of the values R can take on.

Suppose that S 1s partitioned into n_ subsets, Sl’ Sg, cee Sn 3
such that S . N sj =@ for all i# j and 8, US, «v0 U snS = 8. SLet
p; = Prob (R € Si} , for i=1, ..., n
For each i =1, ... , n_, let M(i) be the array of random variables,
_E§i) Céi) 0 ]
i) A1({1) 0 b,i,i)
- -

such that the Jjoint distribution of M<i) coincides with the conditional
Jjoint distribution of M given that R € Si'

Given the above development, the decision structure of the problem
can now be refined considerably. Rather than having to choose z
independently of R, the choice of =z will be made conditional upon the
identity of the subset of S which contains the value taken on by R.
Thus, for each 1 =1, ..., n, let Z(i) be the value of 2z that will

be chosen if R € Si' The resulting formulation of the problem is to

(1) (n)

determine vy, z y ene 3 Z so as to
i IS (1)y,(1)
max E(cx) = Z E(Cj)y, + Z pi Z E(CJ )Zj-n 5
j=1 R B = WS Y
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subject to Prob {AYy S'bY} Z.aY

i i i i .
Prob {Aéz)y + Aé )z( )i bé )}Z oy for 1i=1, ..., ng
Ofyjil, for jecn{l, ..., nY}
0 < z<1) <1, for jeCni{n,+1, :c. ,n} , i=1,...,n
- J-nY-— Y s
yj =0or l, for JeDdDn (L, ..., nY}
(1) _ . | .
z, =0orl, for jeDnNni{n,+1, ... ,n}, i=1,...,n .
J-nY Y 5

This is an ordinary chance-constrained programming problem with O - 1
and bounded decision variables, so it can still be solved by the procedures
described in Sections 4 and 5. Furthermore, since it takes advantage of
the information that becomes available between the first-stage and second-
stage decisions, this refined formulation should yield significantly better
decisions, provided that the Si are chosen strategically.

The main consideration in choosing the Si is that the points within
a subset should be as similar as possible in their impact upon what the
second-stage decisions should be, whereas points in different subsets
should be as different as possible in this regard. For example, suppose
that the relevant new information for the second-stage decisions is how
favorable were the overall consequences of the first-stage decisions.
One might then construct say five categories — very unfavorable, somewhat
unfavorable, neutral, somewhat favorable, and very favorable. The possible
values of R would be matched up with these categories and thereby

assigned to the five subsets, S , 3_. If the individual conse-

>

gquences of certain groups of the first-stage decisions are also

l)

Lo




2

particularly relevant, it might be desirable to use combinations of these
categories and thereby obtain a larger number of subsets.

it is quite evident that this two-stage formulation could be
generalized to a k-stage formulation. However, for most problems, it is
doubtful that the benefits of doing so would justify the considerable

increase in the complexity of setting up the problem.

41



REFERENCES

Balinski, M. L., "Integer Programming: Methods, Uses, Computation,"”
Management Science, Vol. 12 (1965), pp. 253-313.

Beale, E. M. L., "Survey of Integer Programming,'" Operational Research
Quarterly, Vol. 16 (1965), pp. 219-228.

Ben-Israel, A., "On Some Problems of Mathematical Programming," Ph.D.
Dissertation, Northwestern University, Evanston, Illinois, June, 1962.

Charnes, A, and Cooper, W. W., ‘Chance-Constrained Programming,"
Management Science, Vol. 6 (1959), pp. 73-79.

Charnes, A. and Cooper, W. W., "Deterministic Equivalents for
Optimizing and Satisficing Under Chance Constraints," Operations
Research, Vol. 11 (1963), pp. 18-39.

Charnes, A. and Cooper, W. W., "Chance Constraints and Normal Deviates,"

Journal of the American Statistical Association, Vol. 57 (1962),

pp. 134-148.

Charnes, A., Cooper, W. W., and Symonds, G. H., "Cost Horizons and
Certainty Equivalents: An Approach to Stochastic Programming of
Heating 0il," Management Science, Vol. 4 (1958), pp. 235-263.

Charnes, A., Cooper, W. W., and Thompson, G. L., "Constrained
Generalized Medians and Hypermedians as Deterministic Equivalents for
Two-3tage Programs under Uncertainty," Management Science, Vol. 12

(1965), pp. 83-112.

Charnes, A., Cooper, W. W., and Thompson, G. L., "Critical Path
Analyses Via Chance-Constrained and Stochastic Programming,"
Operations Research, Vol. 12 (1964), pp. 460-L470.

Dantzig, George B., Linear Programming and Extensions, Princeton
University Press, Princeton, N. J., 1963.

Dantzig, George B., '"Linear Programming under Uncertainty,"

Management
Science, Vol. 1 (1955), pp. 197-206.,

Feller, William, An Introduction to Probability Theory and Its
Applications, Vol. 1, 2nd edition, John Wiley and Sons, New York, 1957.

Fiacco, Anthony V. and McCormick, Garth P., "The Sequential
Unconstrained Minimization Technigue for Neonlinear Programming, A
Primal-Dual Method," Management Science, Vol. 10 (1964), pp. 360-366.

Fiacco, Anthony V. and McCormick, Garth P., "Computational Algorithm
for the Sequential Unconstrained Minimization Technique for Nonlinear
Programming," Management Science, Vol. 10 (196k4), pp.601-61T7.

hp




[15]

[16]

[17]

—
=
o

—a

(19]

[21]

[22]

[23]

[2k]

[25]

[26]

(27]

[28]

Graves, Robert L. and Wolfe, Phillips (eds.), Recent Advances in
Mathematical Programming, McGraw-Hill, New York, 1963.

Hadley, G., Nonlinear and Dynamic Programming, Addison-Wesley, Reading,
Mass., 1961.

Hillier, Frederick S., "An Optimal Bound-and-Scan Algorithm for Integer
Linear Programming," Technical Report No. 3, Contract Nonr-~-225(89),
Stanford University, August 19, 1966. Submitted to Operations Research.

Hillier, Frederick S., "Efficient Suboptimal Algorithms for Integer
Linear Programming with an Interior," Technical Report No. 2, Contract
Nonr-225(89), Stanford University, August 12, 1966. Submitted to
Operations Research.

Hillier, Frederick S., "The Evaluation of Risky Interrelated
Investments," Technical Report No. 73, Contract Nonr-225(53), Stanford
University, July 24, 196L. To appear in Capital Budgeting of Inter-
related Projects, Office of Naval Research Monograph on Mathematical
Methods in Logistics (edited by Dorothy M. Gilford, A. Charnes, and

W. W. Cooper), 1967.

Hillier, Frederick S., and Lieberman, Gerald J., Introduction to
Operations Research, Holden-Day, San Francisco, 1967.

Kataoka, Shinji, "A Stochastic Programming Model," Econometrica,
Vol. 31 (1963), pp. 181-196.

Kelley, J. E., Jr., "The Cutting-Plane Method for Solving Convex
Programs,”™ Journal of the Society for Industrial and Applied
Mathematics, Vol. 8 (1960), pp. 703-712.

Kirby, M., "Generalized Inverses and Chance-Constrained Programming,"
Northwestern University Research Project: Temporal Planning and
Management Decision under Risk and Uncertainty, Evanston, Ill.,
March, 1965.

Loéve, Michel, Probability Theory, 2nd edition, D. Van Nostrand,
Princeton, New Jersey, 1960.

Miller, Bruce L. and Wagner, Harvey M., “Chance-Constrained Program-
ming with Joint Constraints,” Operations Research, Vol. 13 (1965),
pp. 920-945.

Naslund, Bertil, "A Model of Capital Budgeting under Risk," The Journal
of Business, Vol. XXXIX (1966), pp. 257-271.

Naslund, Bertil, "Mathematical Programming under Risk," The Swedish
Journal of Economics, 1965, pp. 240-255.

Naslund, Bertil, and Whinston, Andrew, "A Model of Multi-Period
Investment under Uncertainty," Management Science, Vol. 8 (1962),
pp. 184-200.

b3



Reiter, Stanley and Rice, Donald B., "Discrete Optimizing Solution
Procedures for Linear and Nonlinear Integer Programming Problems,"
Institute Paper No. 109, Institute for Research in the Behavioral,
Economic, and Management Sciences, Purdue University, Lafayette,
Indiana, May, 1965.

Rosen, J. B., "The Gradient Projection Method for Nonlinear Program-
ming — Part II: Noniinear Cecnstraints," Journal of the Society for
Industrial and Applied Mathematics, Vol. 9 (1961), pp. 514-532.

Sinhal, S. M., "Programming with Standsrd Errors in the Constraints
and the Objective," p. 121 in [15].

Thiel, H., "Some Reflections on Static Programming under Uncertainty,"
Weltwirtschaftiiches Archiv., Vol. 87 (1961); reprinted as Publication
No. 5 of the International Center for Management Science (The Nether-

lands School of Econcmics, Rotterdam).

Thompson, G. L., Cooper, W. W., and Charnes, A., "Characterizations by
Chance-Constrained Programming,” pp. 113-120 in [15].

Tintner, G., "Stochastic Linear Programming with Applications to
Agricultural Economics," in H. A. Antosiewics (ed.)., Second Symposium
on Linear Programming, Na+tional Bureau of Standards, Washington, 1955.

Van De Panne, C. and Popp, W., "Minimum-Cost Cattle Feed under
Probabilistic Protein Constraints," Management Science, Vol. 9, (1963),
pp. L405-430.

Veinott, Arthur F., Jr., "The Supporting Hyperplane Method for
Unimodal Programming,'" Technical Report No. 10, NSF Grant GP-3739,
Stanford University, March 10, 1966.

Weingartner, H. Martin, Mathematical Programming and the Analysis of
Capital Budgeting Problems, Prentice-Hall, Englewood Cliffs, N. J.,
1963.

Zoutendijk, G., Methods of Feasible Directions, Elsevier Publishing
Company, Amsterdam, 1960.

Ly




UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entsred when the overall report ia classified)

1. ORIGINATING ACTIVITY (Corporate author)

Stanford University
Department of Statistics
Stanford, California

¢a REPORT SECURITY C LASSIFICATION

Unclassified

2b. GROUP

3. REPORYT TITLE

Chance-Constrained Programming with O-1 or Bounded Decision Variables

4. DESCRIPTIVE NOTES (Type of repest and inclusive datss)

. Technical Report

S. AUTHOR(S) (Last name, firet name, initial)
Hillier, Frederick S.

6. REPORT DATE
August 26, 1966

7#. TOTAL NO. OF PAGES 7b. NO. OF REFS

Lk 38

8a. CONTRACT OR GRANT NO.
Contract Nonr-225(53)

b. PROJECT NO.

NR-042-002

c.

d.

9a. ORIGINATOR'S REPORT NUMBER(S)

Technical Report No. 92

9b. OTHER ngpom‘ NO(S) (Any other numbers that may be assigned

this repor

Nonr-225(89) ( NR-O47-061)

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited

11. SUPPL EMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Logisties and Mathematical Statistics Branch

Office of Naval Research
Washington, D. C. 20360

13. ABSTRACT

This paper considers the chance-constrained programming problem where the
" decision variables can be either bounded and continuous or restricted to be either
Zero or one, and where some or all of the elements of A, b, and ¢ are random
variables that may be statistically dependent.
procedures are presented, where most of these are based on several linear inequali
that permit this problem to be approximated by a number of ordinary (integer or
noninteger) linear programming problems. Either zero-order or linear decision
rules are allowed for the continuous variables, and a general method of making
"second-stage decisions" with either continuous or O-1 variables is developed.

Both exact and approximate solutio

je
es

DD .52 1473

UNCLASSIFIED

Security Classification




UNCLASSIFIED

Security Classification

KEY WORDS

LINK A LINK & LINK C

operations research

mathematical programming
chance-constrained programming
linear programming under uncertainty
linear bounds

ROLE wT ROLE wT ROLE wT

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
‘‘Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 ‘as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Entei last name, first name, middle initial.
If military, show rank &nd branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATZ: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
shouid follow normal pagination procedures, i.e., enter the
number of pages containing information

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriate .

military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'5 REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
. be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than'those

imposed by security classification, using standard statements
such as:

(1) “‘Qualified requesters may obtain copies of this
report from DDC.”’

(2) ‘Foreign announcement and dissemination of this
report by DDC is not authorized.”’

(3) *‘U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) ‘“‘U. S. military agencies may obtain copies of this
report directly f~om DDC. Other qualified users
shall request through

(5) ‘“All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay~
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though

it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall’
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S), (C), or (U).

There is no limitation ¢n the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional

GPO 886-551

UNCLASSTIFIED

Security Classification




